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Lattice-gas model driven by Hubbard electrons
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Self-consistent Monte Carlo simulations are undertaken for a lattice-gas model which is driven by the free
energy of electrons described by a Hubbard model with electronic hopping restricted to ions at nearest-
neighbor sites. Our previous work, an independent-electron tight-binding lattice-gas model~bcc or fcc!, is
modified to introduce two effects: the disorder of the dense system and, more importantly, the role of the
electronic correlation. The first effect is achieved using an fcc lattice, but restricted so an occupied site can
have no more than eight, instead of twelve, occupied nearest-neighbor sites. To treat correlations, the electronic
intra-atomic repulsion is, at first, included via the Gutzwiller approximation at finite temperature; this approach
is simple enough to be solved for all cases in the large, disordered systems used in our Monte Carlo simulations
but can still give a good qualitative representation of the main effects of the electronic correlations. Then, the
exact treatment of the Hubbard model for clusters with up to six atoms is integrated into the calculation. We
obtain vapor-liquid coexistence curves and then, approximations to the electronic conductivities and paramag-
netic susceptibilities at coexistence conditions. This simple model is, in part, motivated by experiments on the
alkali-metal fluids.@S1063-651X~99!06809-9#

PACS number~s!: 05.70.2a, 64.60.Cn, 71.30.1h, 75.40.Cx
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INTRODUCTION

Correlations among fermions are of basic interest in tre
ing many-body systems by considering effects which go
yond those arising from the Pauli principle. There are v
few systems in which such effects can be treated exactly
even simplified models require approximate treatment. In
study of solids and fluids, especially those which may ha
metallic characteristics, the electron-electron interaction
duces correlations which are important in the understand
of their electronic properties. Further, in fluids in which ele
tron delocalization can take place, the structural and ther
dynamic properties of the system are closely tied to e
tronic effects and thus will also reflect the role of electron
correlations. In this work, we wish to examine the influen
of electron correlations on the structural, thermodynam
and electronic properties of a simplified model of a fluid
monovalent atoms in which the electrons play the cen
role by providing the only system cohesion. Although th
type of problem is intrinsically interesting from a theoretic
point of view, its study is also motivated by our hope
obtaining a qualitative understanding which will allow inte
pretation of the properties of the alkali fluids; these mater
have been extensively studied experimentally.

A simple model in which to study the influence of ele
tron correlations is that suggested by Hubbard@1#. It consists
in allowing electron transfer between atoms and conside
a constant short-ranged electron-electron repulsion while
glecting all other effects of the interaction among electro
Despite its apparent simplicity, the model is not suscept
to exact solution, except for small clusters of atoms and o
dimensional lattice systems@2#. Approximation methods
have been reviewed@3#. This model has initially been show
to be useful in studying a rich spectrum of molecular ma
PRE 601063-651X/99/60~3!/2626~10!/$15.00
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netic properties. It has also been used to elucidate such s
state properties as a metal-insulator transition and magn
anomalies. Further, its study has been applied to syst
with a statistical ‘‘frozen-in’’ disorder in order to study th
joint effects of interaction and disorder~see, for example,
Refs. @4# and @5#!. Metal-insulator transitions are known t
arise due to either or both effects. In a fluid, it is of interest
couple the interaction of electrons to a ‘‘thermalized’’ diso
der of the atomic positions, rather than a ‘‘frozen-in’’ diso
der. The statistical effects of such two types of ionic disord
are different and the qualitative conclusions on the effects
ionic disorder and electronic correlation on the electro
properties are in sharp contrast; a brief discussion is give
the last section.

In considering the experimental aspect of the motivat
for this study, experiments on the alkali fluids, at phase
existence, show several notable features@6#: ~1! A pair-
correlation function which, as the density is lowered, ha
nearest-neighbor~nn! distance which is nearly fixed while
the average coordination number decreases.~2! A vapor-
liquid coexistence curve, scaled to the critical paramet
which is substantially more asymmetric than that of sim
fluids, i.e., with a relatively denser liquid phase.~3! A metal-
nonmetal transition which results on lowering the dens
sufficiently; at coexistence it takes place in the vapor: i.e.
the critical temperature, the conductivity shows a strong
crease on lowering the pressure, at pressures below the
cal value.~4! A paramagnetic susceptibility which has th
following dependence@7#: ~i! At the lowest densities, a Curie
behavior, typical ofN neutral monovalent atoms:NmB

2/kBT,
is observed.~ii ! Then, as the density increases, at first there
a reduction from the Curie dependence.~iii ! There follows a
reapproach to the Curie values, in the liquid phase.~iv! Fi-
nally, a decrease towards an enhanced Pauli-Landau l
2626 © 1999 The American Physical Society
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PRE 60 2627LATTICE-GAS MODEL DRIVEN BY HUBBARD ELECTRONS
characteristic of a degenerate-electron system@8#, is ob-
served; it has a dependence on density with only a w
explicit temperature effect.

We have attempted a minimal model to study elect
effects in a fluid and theoretically account for the above f
tures qualitatively. To date, our simplest model was a s
consistent treatment of ions and electrons with the ionic c
figurations obtained from a Monte Carlo treatment based
a lattice gas, in which the ions partially occupy the sites o
chosen lattice. The system cohesion was purely electr
and resulted from a thermal occupation of the states fro
one-electron tight-binding model@9#. The ionic configura-
tions were driven by the electronic free energy which d
pended on those ionic positions. With reference to the ab
list of experimental features, that model has the followi
virtues:~1! The observed feature of the pair-correlation fun
tion automatically results from the lattice-gas model.~2! The
coexistence curve asymmetry is obtained as a consequ
of the fact that the effective ion-ion interactions are not pa
wise additive, in contrast to the case for simple fluids.~3!
The metal-nonmetal transition results since the electro
properties dominantly reflect the ionic structures, which f
to percolate at low density; the percolation threshold is fou
to occur at lower density than that for random ionic positio
and occurs in the vapor, at coexistence. However, that m
yields a paramagnetic susceptibility at odds with obser
tions. The model results in the following behavior of th
susceptibility. At low system density, the equilibrium syste
consists of isolated occupied sites which are charge ne
only in a statistical sense. Statistically, positive and nega
ions are given the same weight as the neutral atom spe
but do not contribute to the paramagnetism. Thus, the mo
yields one-half of the Curie paramagnetism of neut
monovalent atoms. On increasing the density, clusters
pear; as spin-paired electrons do not contribute to the p
magnetism, a reduction from the Curie result arises. At e
higher density, the energy-level spacing near the chem
potential eventually decreases to values less than the the
energy, causing a transition to the Pauli behavior. The mo
contains no mechanism which might result in any furth
features in the susceptibility. We undertook various attem
to include effects, in the one-electron model, which mig
result in a susceptibility bump@as in~4 i i i )#, such as allow-
ing cluster charging, but all have failed. The chargi
mechanism was considered since Redmer and Warren@10#
had reported a mean-field calculation, considering chem
equilibrium among a variety of atomic and molecular sp
cies, and their charged versions, which did yield such
bump, due mainly to the positive diatomic molecules. In o
model, the physical space does not exist for a substa
fraction of small clusters, which are isolated from the rest
the system, if the overall site-occupation fraction is to cor
spond to the liquid phase at the values required for the
served susceptibility bump.

Clearly, the above model is limited by the complete n
glect of the intrinsically interesting electron-electron intera
tions. Further, published work has included speculations
the experiments have two features that are specifically
odds with our simplest model. First, that the metal-nonme
transition is not percolative but rather correlation induced
the Mott type @11#. Then, that the magnetic susceptibili
k

n
-

f-
-
n
a
ic
a

-
ve

-

ce
-

ic
il
d
s
el
-

ral
e
ies
el
l
p-
a-
n
al
al

el
r
ts
t

al
-
a
r
ial
f
-
b-

-
-
at
at
l
f

bump ~4 i i i ) is also induced by electron correlations:
Brinkman-Rice@12# precursor of antiferromagnetism@13#.
We label the above statements as speculative since a the
ical self-consistent model of a fluid with such interactio
and disordered ionic topologies is lacking. There does e
work which treats ionic disorder and electron correlatio
First, a filled lattice with an imposed Anderson-type@14#
disorder in the site energies and Hubbard onsite terms@4#.
Then, an off-lattice Hubbard model for the electrons with t
ionic positions assumed to be either randomly distributed
space ~labeled gaslike disorder! or correlated exclusively
through hard-sphere interactions among the ions~labeled liq-
uidlike disorder! @5#. Although such work claims to represen
models suitable for the alkali fluids, the statistical ionic d
order is frozen in and thus is fully decoupled from the ele
tronic structure; thus, we suggest that the correct statist
weighing of the relevant effects are not included in su
models.

In this paper, we partially remedy our previous neglect
electron-electron interactions. A tight-binding Hubba
model for the electrons and a lattice gas for the ionic c
figurations are used. Once again, the electrons and ions
treated self-consistently. The Hubbard model is first trea
using the variational Gutzwiller approximation@15#, at non-
zero temperature@16#, and thermodynamic and electron
properties are obtained@17#. For strong electronic correla
tions, that approximation is then partially improved by int
grating into the treatment an exact solution of the Hubb
model for clusters of up to six atoms; such a size is at
limits of normal computational power. Thus, we mainta
our previous model but add ‘‘thermalized’’ disorder in th
dense liquid and an approximate treatment of onsite elect
electron interactions. We reexamine the set of results on
asymmetry of the coexistence curve, the underlying caus
the metal-nonmetal transition, and the paramagnetic sus
tibility.

HUBBARD MODEL AND GUTZWILLER
APPROXIMATION

Our model is to be self-consistent in the treatment of io
and electrons. The ionic structures will be described withi
lattice-gas model: the ions partially occupy the sites of
underlying lattice. We wish to consider a wide variety
disordered ionic configurations, to be able to describe a fl
which ranges from a low-density gas to a dense liquid. F
each ionic configuration, the electrons, in the same num
as the ions, are described by a single orbital associated
each ion and coupled, by a hopping matrix element2t, to
the orbitals at nearest-neighbor~nn! sites which are also oc
cupied by ions. The Hubbard Hamiltonian for the electro
also includes an onsite repulsionU between electrons on th
same sites:

H52t (
( i , j )s

cis
† cj s1U(

i
ni↑ni↓, ~1!

with c being the annihilation andn the number operators. A
the relevant thermal energies turn out to be comparable
the energy scalet, we require the Helmholtz free energ
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with both the internal energy and an entropic contribution
the electrons described by the above Hamiltonian:

Fel5^H&2TSel . ~2!

Note that the electronic Hamiltonian and its associa
free energy depend on ionic configuration through the c
nectivity of occupied nn pairs (i , j ). We later close the self
consistency, within the model, by takingFel as the only en-
ergy for the ions in the lattice-gas configurations. T
requirement of thermal equilibrium among ionic configur
tions then leads to our Monte Carlo procedure, weighing
probability of ionic configurations by the Boltzmann fact
e2Fel /kBT. Also, mean electronic properties, such as el
tronic conductivities and paramagnetic susceptibilities, w
arise from the Hubbard Hamiltonian with connectivities d
to the most probable ionic configurations.

The thermodynamic self consistency, between ionic a
electronic properties, demanded in our model is similar
that which might be expected in the alkali-metal fluids,
though their realistic description should include the abse
of a background lattice and other interactions, such as C
lombic and van der Waals ones, beyond those characteri
this simplest model. On the other hand, this self-consiste
is quite different to that in the type of solid-state problems
which the Hubbard Hamiltonian has been applied, for eit
ordered cases or for those in which a frozen-in disorde
the diagonal or off-diagonal energies are considered. Fro
practical point of view, the self-consistency we dema
poses a difficult problem. The Hubbard Hamiltonian c
only be solved exactly for very small clusters and there
strong activity in the search for workable approximations
large clusters and bulk systems. However, in our model
require the solution to this Hamiltonian problem with co
nectivities ranging from isolated atoms to disordered b
systems. Therefore, accounting for electronic correlati
arising from the Hubbard Hamiltonian need to be treated
simple approximation which compromises between the
quirements of accuracy and of computational cost. We fi
examined an unrestricted-Hartree-Fock procedure for
Hubbard model. In that case, in the Hubbard term of
Hamiltonian, for each spin orientation, the opposite-s
electron occupation at each site is replaced by its mean-
average and, for fixed ionic connectivity, the electronic sp
dependent problem is iterated to self-consistency; this pro
dure is a first-order perturbative treatment of electron co
lation effects. AsU/t grows, it results in strong anomalie
for small clusters~with spurious transitions to antiferromag
netic structures!. Then, we proceeded to consider other a
proximations which, in principle, are not perturbative.

We begin with the Gutzwiller@15# variational approxima-
tion, with the Riceet al. @16# extension to finite temperature
In that case, each cluster is statistically neutral and is tre
independently. Electronic double occupancy of sites is pe
ized by constructing wave functions with the amplitude
such terms reduced from the independent-electron value
variational parameter; a cluster with a fixed fractiond of the
ions having two electrons is examined. The possible val
of d range from zero: one electron per site, a situation
vored for largeU/t, to the value it would take for uncorre
lated electrons:d50.25. Cases in which a fractionns of the
f
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ions are occupied by spin-s electrons may be considered; fo
the paramagnetic casens50.5, but we shall later consider a
alternative, due to the presence of a magnetic field, in or
to calculate the susceptibility. The Gutzwiller approximati
results in the following. The exact uncorrelated electro
spectrum~energiesek) is occupied thermally; this yields a
average band energy per particle. Note that since the hop
Hamiltonian has zero trace, then the sum ofek , over the
entire band, also vanishes; thus, the above average ban
ergy is negative. The approximate cluster energy per a
(E), for fixed d, is obtained by adding the onsite correlatio
energyUd to the above average, which is multiplied by
spin-dependent band-renormalization factor

q~s,ns ,d!5$@~12ns2n2s1d!~ns2d!#1/2

1@d~n2s2d!#1/2%2/@ns~12ns!#. ~3!

Thus,

E~d!5Ud1(
ks

q~s,ns ,d!eks f ks . ~4!

The function f ks is the statistical thermal occupancy of th
states. For the paramagnetic case,q varies monotonically
from zero, atd50, to unity, atd51/4; thus, since the firs
term inE(d) increases while the second decreases withd, a
minimization is possible.

However, for nonzero temperature, entropy effects a
need to be included before minimizing. The entropy for fr
fermions, required to reproduce Landau Fermi-liquid beh
ior, needs to be weighed by a factorwk which accounts for
nonorthogonality of the variational wave functions at fix
d. The free energy per particle@16# is then given by

F~d!5E~d!1kBT(
ks

wk@ f ks ln f ks1~12 f ks!ln~12 f ks!#.

~5!

Minimizing this free energy, at first with respect tons ,
yields the probability that each state is occupied:

f ks5$exp@q~eks2me!/~wkkBT!#11%21. ~6!

In the above expression,me is the electronic chemical poten
tial which is chosen so each cluster is, statistically, cha
neutral. We proceed by taking the unknown entropy wei
function equal to a constant (wk5w), which is obtained
from the sum rule arising from the total number of degrees
freedom at fixedd. Then,

w5@~122d!ln~1/22d!12d ln~d!#/~2 ln 4!. ~7!

Finally, F is to be minimized, usingd, to find the average
fractional double occupancy of the cluster and to later all
calculation of the equilibrium thermodynamic properties
the system.

In using the Gutzwiller approximation to the Hubba
model, we want to be able to examine the effects due
electron correlations yet we must be careful to avoid qu
tative inaccuracies due to the approximation. We have
plored the effects of the onsite electron-electron interacti
through calculations of the coexistence curve, fractio
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double occupancy, electronic conductivity, and magne
susceptibility, for 0<U/t<6. This range covers the region i
which the effects of the electron-electron interaction beco
qualitatively important. For instance, the exact Hubbard c
culation of the dimer energy shows that ifU/t56 the bind-
ing energy is reduced substantially, to 0.30 times itsU50
value. Within the Gutzwiller approximation, the effect of th
electron-electron repulsion is always overestimated. Th
the approximate ground state binding energies of the di
are reduced with respect to the exact values by factor
0.91, 0.42, and 0.21, forU/t52, 4.5, and 6, respectively
For larger clusters and for the temperatures relevant to
both the effect due toU and its inherent overestimation b
the Gutzwiller approximation are strongly reduced. In su
mary, we may takeU/t54.5 as a representative value f
which the effect of the electron-electron interaction is
ready important and the Gutzwiller approximation is s
reasonably accurate, while forU/t56 the approximation has
already become qualitatively inaccurate for small clust
and the small cluster corrections presented later become
essary. The range 0<U/t<6 can also be made reasonab
from an experimental point of view for the alkali fluids.
we compare the calculated binding energy per particle of
dimer relative to that of the bulk fluid~using the model!, we
obtain too large a value forU50 and too small a value fo
U/t56.

LATTICE-GAS SIMULATIONS

The underlying lattice will be taken to be fcc but th
partial occupation by ions is to be restricted so that no
can have in excess of eight, rather than twelve, occupied
this value reflects the experimental situation in the alk
fluids. The lattice-filling restriction results in a disordere
system even in the high-density limit. Self-consistency of
electronic states and ionic positions is then sought as
lows. For each isotherm of interest, and starting with a se
random realizations of ionic positions for a variety of latti
fillings ~restricted as to the number of occupied nn!, we ob-
tain the exact uncorrelated electronic states for each rea
tion in the set. The electronic free energy is then calcula
for each cluster and minimized with respect tod. The sum
over disconnected clusters yields the total electronic free
ergy. Finally, to simplify the Monte Carlo calculations o
equilibrium ionic configurations, these total electronic fr
energies are assumed to be a sum of an energy for each
which depends on the disordered local environment o
through the number of its occupied nn. For a set of confi
rations, letting

F5 (
k50

8

Nkuk~T!, ~8!

with Nk being the fraction of ions withk occupied nn in each
configuration, allows the coefficientsuk(T) to be obtained
from a least-squares fit to the free energies of the se
configurations. These coefficients, for an ensemble of r
dom occupations, are used as the energies for an ion wk
occupied nn in grand-canonical Monte Carlo simulatio
Isothermal spectra of configurations obtained by the Mo
Carlo procedure are then used to recalculateF and reobtain
c
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the coefficientsuk(T); new Monte Carlo simulations are the
performed. This process is repeated until it converges
yield a self-consistent ‘‘thermalized’’ disorder. The avera
accuracy obtained from the fits is found to be of 0.4%,
U50, and it decreases to 2%, forU/t56 treated using the
Gutzwiller approximation.

Our grand-canonical Monte Carlo simulations, for ea
chosen value of the Hubbard parameter, consist in searc
for the equilibrium fractional occupation of the lattice~the
densityr), and equilibrium configurations, at fixed temper
ture (T) and ionic chemical potentialm, using the previously
determined site energiesuk(T) and carrying out the self-
consistent iterations. If the temperature is sufficiently lo
jumps in density are obtained, corresponding to ne
coexistence conditions. Suitable averaging procedures
then used.

In Fig. 1, as our first set of results, we compare the
duced vapor-liquid coexistence curves calculated for the c
in which the electrons are uncorrelated (U50): for the bcc
and fcc lattices~no filling restriction, from Fig. 6 of Ref.@9#!
and those for the fcc lattice restricted so no ion can h
more than eight nn, the last case includes a disordered
tem even at the highest densities; the experimental data
Cs is also shown. In choosing the restricted fcc model,
shape of the phase diagram is brought into an impro
agreement with experiment for the higher density liqu
branch; this is a modest improvement we sought. It might
noted that background lattice causes the critical tempera
to only change slightly in going from a bcc lattice, whe
kBTc /t equals 0.42, to the restricted-occupancy fcc case
which the value is 0.45.

GUTZWILLER APPROXIMATION RESULTS

A. Coexistence

The vapor-liquid coexistence curves, obtained with o
Monte Carlo simulations, forU50 and Gutzwiller result for
U/t54.5 are shown in Fig. 2, together with the correct
results, discussed later, of the approximation forU/t56.

FIG. 1. Comparison of the reduced phase diagrams obta
previously for bcc~full circles! and fcc ~open circles! lattices,U
50 see Ref.@9#, with the present results~squares! for the fcc lattice
restricted so no ion can have more than eight occupied nn sites,
U50. The experimental Cs data~line!, from Ref.@6#, is also shown.
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They show critical temperatures which decrease weakly w
U.This is in qualitative agreement with our expectatio
since the only driving force for condensation in our mode
the electronic delocalization, which tends to be restricted
the electron-electron interaction. The decrease ofkBTc /t,
with U/t, is not very important; we obtain values of 0.40, f
U/t56, and 0.43, forU/t54.5, to be compared with 0.45
for U50. These differences are comparable to those p
duced by using the restricted fcc instead of the bcc lattic
U50.

The second effect observed in Fig. 2 is that the coexis
vapor densities increase withU/t, partially decreasing the
asymmetry of the liquid-vapor coexistence curve. This eff
is also to be expected since forU50 the vapor phase has
large proportion of dimers and other small clusters, w
large binding energies per atom. IncreasingU/t decreases
these binding energies and the coefficientsuk in Eq. ~8! be-
come more linear withk, thus approaching the bond-additiv
behavior of simple fluids which results in a symmetric pha
coexistence. Thus, while the critical temperature is not
fected substantially by either the filling restriction on t
lattice or by these electron correlation effects, the latter
fects attenuate the difference between the present case
models of simple fluids.

With coexistence ionic configurations having been o
tained with the Monte Carlo process, we may explore,
some detail, the average electronic properties correspon
to such coexistence conditions. Let us consider first the
havior of d in the Gutzwiller approximation, it is presente
in Fig. 3 as function of the density along the coexisten
curve forU/t56. This double occupancy fraction is alway
below the uncorrelated valued50.25, but the difference de
pends strongly on the density. At intermediate and high d
sities d is nearly constant and its dominant effect is the
fective reduction of the band energy by the factorq. In the
vapor side,d depends strongly on density and approaches
d50 limit, in which the electrons would be fully localize
and the ions in a cluster would behave as independent at

FIG. 2. Calculated self-consistent vapor-liquid coexisten
curves withkBT in units of the hopping matrix elementt and r
being the fractional occupancy of the fcc lattice, for various val
of U ~in units of t), in the Gutzwiller approximation. The cas
U/t56 has all clusters with six or less atoms treated exactly. T
lines are merely guides to the eye.
h
,

y

o-
at

g

t

e
f-

f-
and

-
n
ng
e-

e

n-
-

e

s.

This result shows that the electronic properties may in p
ciple be strongly changed by the electron-electron interac
in the range ofU/t considered here. As will be shown, th
change indeed takes place for the magnetic susceptibility
not for the electrical conductivity.

B. Electrical conductivity

We first focus on the electrical conductivity of the syste
It should be noticed that the case of interest to us, a hi
temperature disordered system, contrasts with the usua
plication of the Hubbard model for low-temperature soli
state systems. Whereas in those latter cases the elect
states retain their phase coherence for long distances be
it is disrupted by scattering, in our case this distance is
pected to be short. In the cases of interest to us, we take
a reasonable estimate, a phase-coherence length equal
nn distance in the lattice.

As in our previous work@9#, we consider two different
approximations to estimate the electrical conductivity, fi
the ‘‘classical’’ approach by Nieldet al. @20#, based on the
connectivity of the ions in each configuration: occupied
sites in the lattice are connected by unit resistors, and
macroscopic conductivity is obtained from using Kirchoff
laws to obtain the resistance of each configuration and t
averaging over configurations. Alternatively, though still a
suming a loss of phase memory~due to scattering! after a nn
hop, a quantum estimate for the conductivity can be
tained. This approach is a variant of the randomized-ph
model of Hindley@18# in the Kubo-Greenwood formula@19#,
modified for the disordered topology of hopping sites in o
model. The system is again described as a network of c
sical resistors, but now with each bond, between occupied
sitesi and j , having a variable conductance given by

e

s

e

FIG. 3. Calculated mean values of the fractional double oc
pancy of sites,d, as a function of the fractional occupation of th
fcc lattice (r), at temperatures corresponding to the calculated
existence curve, forU/t56. Results are shown for the Gutzwille
approximation~GA! and for the case in which clusters of 6 atoms
less are treated exactly. The lines are obtained by averaging ov
obtained configurations, either at high or low density, at the che
cal potential corresponding to coexistence while the points limit
average to configurations whose densities are in a narrow b
about those corresponding to each coexisting phase; it can be
that both procedures give the same results.
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1/Ri , j} (
mÞn

] f n

]en
ufn~ i !u2ufm~ j !u2d~en2em!. ~9!

The subscriptsm and n refer to different electronic state
which have the same energy, for the elastic scattering c
The conductivity is then obtained as in the previous ca
Also, in this approach, small clusters cannot have any in
ence on metallic behavior, as they are connected by infi
resistance to other clusters. Then, percolation of the io
structures is a prerequisite for metallic conductivities. In o
finite size system, the condition of elastic scattering is
laxed, with the delta function being replaced by a Gauss
of variance equal to 0.16t; the precise Gaussian-width valu
has little importance to the results of the nonzeroU cases, if
it is small compared to U. The required energies and am
tudes were obtained from the exact diagonalizations of
uncorrelated-electron model for typical equilibrium config
rations at the thermodynamic parameters andU values of
interest. The results forU50 showed that the thermally av
eraged conductivity depended mainly on the connectivity
the ions, and the metal-insulator transition was determi
by the prerequisite of ionic percolation, without importa
changes due to the quantum effects.

The usual mean-field treatment of the randomized-ph
model@18,5# should be contrasted with our approach. In th
usual treatment, the macroscopic conductivity is taken to
proportional to our 1/Ri j averaged over all possible ioni
configurations. At high density, when the disorder is we
the values of 1/Ri j are indeed all similar and, since the co
nectivity is high, this approach would give results which a
close to our solutions, using Kirchoff’s laws, for the netwo
of classical resistorsRi j . However, at lower density, the
mean-field approach will completely fail to describe the tra
sition to a nonpercolative regime, as the topological disor
in the connectivity is washed out on averaging 1/Ri j over
ionic configurations.

For nonvanishingU, in addition to the configurations be
ing used, the term with the partial derivative of the Fer
function contains the effects of electronic correlations, in
averaged sense, since it depends on the fractional do
occupancyd. Equivalently, the correlation dependence
the conductance can be understood from its dependenc
the average electron occupation of the two sites, a pai
probabilities which are assumed to be uncorrelated spati
If U/t is nonvanishing, the only energy-conserving transp
arises from propagating an empty or a doubly occupied s
both possibilities vanish ifd50. That is, this transport is
possible if the neighboring pair of sites either have one
them singly or doubly occupied and the other empty~the
electron can then jump to the empty site!. In contrast, if the
site pair is occupied by electrons of opposite spin, or
jump proceeds from a doubly occupied to an empty site,
transport causes an energy change ofU. Also, if the neigh-
boring pair of sites have parallel-spin electrons the trans
is forbidden by the Pauli principle. The average probabi
of all possibilities are easily obtained from the definition th
a fraction d of the ions are doubly occupied, that due
charge neutrality there is also a fractiond which are empty,
and that the remaining ions must then have equal fraction
sites occupied by spin-up and spin-down electrons. This
e.
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gument yields the samed dependence as does the part
derivative of the Fermi function.

The quantum approach to the conductivity takes elect
correlations into account, through the decreasing valuesd
in the Gutzwiller approximation. It also partially conside
disorder-induced electron wave function effects, through
site amplitudes in Eq.~9!. Thus, the ‘‘classical’’ conductivity
of any percolating ionic configuration may be reduced, a
even taken to zero, by the joint effect of disorder and cor
lation on the electronic structure, with a Mott-Anderson tra
sition. For some particular ionic configurations, near the
tained percolation threshold, the results of the Kub
Greenwood calculation could show a strong dispersion in
conductances of the different bonds due to correlations
interference effects. The overall system resistance wo
then be very different from that due to setting all ‘‘bon
resistors’’ equal to their mean value, as is done in the s
plest approach. Indeed, Franz@21#, using a Cayley-tree ap
proximation for the ionic configuration and an independe
electron Kubo-Greenwood formula for the conductivit
obtained a critical density for quantum percolation which
higher than that for classical percolation.

It is found, in the statistical sampling of ionic configura
tions from our model, that the dominant configurations
give global resistances which are well described by the s
plest version of the Nield model: a constant resistor. T
conductivity resulting from our procedure is shown in Fig.
for the fluid at coexistence, withU/t56 and ionic configu-
rations obtained using the Gutzwiller approximation; also
comparison is shown with the simplest model. As can
seen, there is good agreement between the alternate met
These results forU/t56 are in reasonable agreement wi
our previousU50 work ~compare with Fig. 5 in Ref.@9#!,
noting the difference in density normalization and the fa
that the present results are at coexistence while the prev
ones were for a near-critical isotherm. Thus, percolation

FIG. 4. Electrical conductivity, normalized to the value at t
restricted maximum filling of the fcc lattice, logarithmic scale,
fractional occupation of the lattice. The conditions correspond
the Gutzwiller approximation, the calculated coexistence curve,
U/t56. All pairs of occupied nn sites are replaced by a const
resistor in the classical case~open circles! or by resistors with the
variable conductances of Eq.~9! in the quantum case~squares!. The
points and line have the same meaning as in Fig. 3.
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the ionic structures, at coexistence, causes the nonm
metal transition in the present calculation and thus, pres
ably, in the alkali fluids.

C. Magnetic susceptibility

Next, the volume susceptibility can be obtained by add
a magnetic field to the free energy calculations~see Ref.
@16#!. At coexistence, the calculated susceptibilities
shown, for several values ofU/t, in Fig. 5. The units used
are mB

2/t times a density renormalization: the experimen
density of the dense liquid divided by the maximum~re-
stricted! fractional filling of the fcc lattice. The insert to thi
figure shows the susceptibility normalized to the appropr
Curie value. The first qualitative change, due to the electr
electron interaction, is that, for isolated atoms, we reco
the low-temperature Curie lawxCurie5NmB

2/kBT. In the U
50 case, this result was reduced by a factor of 2 by
unphysical statistical weight given to the charged ions. I
noteworthy that asU/t increases the density range in whic
the Curie law is valid grows beyond that at which isolat
atoms are the main species. This effect is due to the decr
ing values ofd, which in the limitd50 would give the full
Curie result for any configuration of the ions. As the syst
density increases, the electronic degeneracy increases an
magnetic susceptibility tends to the Pauli-like behavi
roughly independent ofT and controlled by the density o
states at the Fermi level. The results forU/t54.5, along the
coexistence curve, show a rather sharp change on depa
from the Curie law, towards the Pauli regime, aroundr
50.04, on the vapor side of coexistence. The compariso
the U50 and theU/t54.5 results, at high density, show
moderate enhancement of the magnetic susceptibility du
the electron correlation, but the effect is not as importan
that in the low density regime.

FIG. 5. Volume paramagnetic susceptibility~Gaussian units! vs
fractional filling of the fcc lattice.xm is the volumemB

2/t divided by
that of the unit cell in the fcc lattice. The conditions correspond
the Gutzwiller approximation and the calculated coexistence cur
for various values ofU ~in units of t). The caseU/t56 is also
shown when small clusters are treated exactly. The symbols co
spond to grand canonical averages and the lines to~smoothed! his-
tograms of Monte Carlo averages. Also shown, see inset, are
susceptibilities normalized to the Curie result; at low densities
ratio tends to unity, except forU50 when it tends to 0.5.
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The results forU/t56, within the Gutzwiller approxima-
tion, yield an even larger range of validity for the Curie la
With increasing density,x has a maximum value atr
50.06, then a shallow minimum, as bothd and the electron
degeneracy increase, and finally the susceptibility tends
the Pauli behavior in the liquid. The experimental resu
also present a local maximum, but there it is observed w
within the liquid regime. Within our calculationd never de-
creases in that region and the calculated susceptibility in
liquid is well below the Curie result. On analyzing the co
tributions to our calculatedx in the shoulder region, there i
a very large contribution from small clusters, an effect whi
might be an artifact of the approximation. In the temperat
range of interest, the Gutzwiller approximation givesd50
for dimers and noncompact trimers ifU/t>4.7, while exact
calculations for the same clusters result in a small but fin
value of d and a magnetic susceptibility below the Cur
limit. Moreover, thed50 result in the Gutzwiller approxi-
mation is obtained sharply at large enoughU/t, as an un-
physical phase transition, while the exact results alw
change smoothly for anyU. This fact confirms thatU/t56
may be beyond the range of qualitative accuracy for
Gutzwiller approximation, so that the observed should
structure could be an artifact. In the next section we see
correction for small clusters and check its effects on
properties derived from the model.

SMALL CLUSTER CORRECTIONS

As noted, the Gutzwiller approximation, for largeU/t,
results in qualitative anomalies, with respect to exact resu
in the behavior ofd for selected small clusters and suc
anomalies have an observable effect on their calculated
ceptibilities. However, for any cluster withN atoms the exact
solution of the Hubbard Hamiltonian may be obtain
through the diagonalization of a 4N34N matrix, though the
problem is complicated by the fact that the number of co
figurations for N-site clusters also grows rapidly withN.
Thus, we undertook to carry out a corrective program us
exact solutions of the Hubbard model for all cluster config
rations which contain up to six atoms; this limit was dete
mined by practical computational limitations, but it includ
all the cases in which the Gutzwiller approximation forU/t
56 seems to be qualitatively wrong.

The exact energy of clusters is, of course, lower than t
obtained using the variational Gutzwiller approximatio
Taking into account all the possible configurations of ea
cluster in the lattice, we calculateF(T,N)/t, the thermal
average of the free energy per atom as a function of
cluster sizeN, both with the exact solution of the Hubbar
Hamiltonian and with the Gutzwiller approximation~GA!,
for N51 to 6 andU/t56. An example of the results, fo
kBT/t50.36, is shown in Fig. 6. The free-energy differen
per site,D f (T,N)/t5(Fexact2FGA)/t, is also shown in the
inset of Fig. 6, plotted vsN21. As may be expected, it van
ishes for the monomer but is larger for dimersN52 than for
larger clusters. In fact forN53 to 6 the difference become
nearly constant, as should be the case in the thermodyna
limit of large clusters since bothFexactandFGA are extensive
variables. Thus, we may extrapolate this free-energy-per-
correction to any larger cluster or compact phase for wh
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the exact solution of the Hubbard Hamiltonian is beyond
computational capability. In this way, we assume that a r
sonable way to proceed is to shift the free energies per
cupied site of the Gutzwiller approximation by a consta
term,D f (T), in all the clusters withN>6, while for smaller
clusters the energy is calculated exactly. Notice that with
this shift, of the free energy of large clusters, the use of
exact solution forN<6 followed by the result of the GA
method forN.6 yields a discontinuity in the mean energ
of the clusters, as a function ofN, and would produce un
physical anomalies in the ionic correlation structure of
vapor. Moreover, in the liquid branch the correction is only
rigid shift of the free energy per site. The shift does n
change the equation of state nor the ion-correlation struct
which should still be that of the GA. Following this proce
dure results in sets ofuk(T) which produce fits of the sam
quality as had been obtained previously.

The effects of these corrective procedures atU/t56 are
observable, but not very important, in the calculations of
phase diagram~not shown!. Their effect on the calculated
average double occupancyd, along the coexistence curve,
shown in Fig. 3; treating the small clusters exactly yield
small increase in the vapor phase. However, the calcul
electrical conductivities, along the respective coexiste
lines, have unobservable differences, as could be expe
since the conductivity only depends on the percolating c
ters for which the corrective procedure is only a rigid shift
the energies. A larger difference appears in the magn
susceptibility, which was the property most sensitive to
electron-electron interaction. The artifact of havingd50 for
dimers and open trimers, in the GA forU/t.4.7, is now
corrected and the shoulder in the volume susceptibility
comes smoother. Figure 5 also shows the susceptibility
coexistence, with the small cluster corrections forU/t56.
However, these changes do not alter any of our qualita
conclusions, which appear to be the true properties of

FIG. 6. Free energies per particle, in units oft, vs number of
atoms per cluster (N), calculated using typical configurations ob
tained from the parametrizationU/t56 and kBT/t50.36. The
circles are obtained from exact treatment of clusters with up to
atoms. The squares are our previous results, treating all cluste
the Gutzwiller approximation~GA!. The inset shows the errors i
the approximation plotted vsN21; for clusters withN>6 we have
extrapolated this result, by taking the error to be a constant.
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model and not an artifact of the approximation used to so
the Hubbard Hamiltonian.

SUMMARY AND FINAL REMARKS

Our model is based on a self-consistent treatment
coupled ions and electrons. It considers the ions within
lattice gas, with thermal equilibrium configurations dete
mined using Monte Carlo simulations. The ionic positio
are driven by the electronic free energy. The electrons
assumed to obey a Hubbard model with hopping limited
ionic positions at nn sites. The approximation used to tr
the electrons is that of Gutzwiller, and Riceet al. The model
has allowed us to reproduce several features observed ex
mentally in the alkali-metal fluids. First, the asymmetry a
general shape of the reduced coexistence curve. Furtherm
a choice of the hopping parametert of order 0.5 eV for Cs,
which increases monotonically for Rb, K, and Na, gives re
sonable approximations to the observed values of the di
and bulk liquid cohesive energies, and also to the criti
temperatures. Also, the general behavior of the electr
conductivities, at coexistence conditions, are reproduced

The effects of the on-site electron-electron interactio
up to U/t56, do not change the qualitative behavior of t
vapor-liquid coexistence or of the nonmetal-metal transiti
That transition is still driven by the classical percolation
the ionic clusters, as in theU50 case. The possibility of a
Mott-Anderson transition, with the localization of the ele
tronic states by the joint effects of disorder and correlation
present in our treatment of the model but turns out to be
little importance for the conductivity thermally average
over the relevant ionic configurations. Clearly, the contr
between the ‘‘classical’’ percolation of the ions and ele
tronic percolation is sharper in our model than in more re
istic descriptions of a fluid, as we consider the hopping e
ment to be either zero ort,with the disorder appearing onl
through the connectivity of the orbitals. The presence of d
order in the values oft would enhance the Anderson loca
ization and links with lower values oft would enhance the
effects ofU in a Mott transition.

The above effects of disorder in the values of hopp
matrix element can be partially seen in the disordered
lattice Hubbard models of Koslowski, Rowan, and Log
@5#. Those models use a hopping matrix elementt(r i j ) hav-
ing an exponential decay, with ion separation, and a Hubb
term which is treated using the unrestricted-Hartree-Fock
proximation. The work analyzes the density of electron sta
arising from a ‘‘’gaslike’’ ~uncorrelated! or ‘‘liquidlike’’
~with hard-sphere correlations! disorder in the ionic struc-
tures. In that work, the electrical conductivity is then calc
lated within the mean-field treatment of the connectivity d
cussed previously, so that there is no possibility of
transition to a nonpercolative regime. Such a transition,
fact, could never appear with their long-ranged hopping m
trix element. Their conductivity results~with a frozen disor-
der and at zero temperature! depend on the density of state
at the Fermi level and on their estimate of the degree
localization of these states. In contrast to our conclusions,
role of the electron-electron correlation is crucial to the co
ductivity calculated in those models, since the dominant d
sity dependence appears through the square of the dens
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states~per unit volume! at the Fermi level. ForU50 and as
the density is lowered, the electronic band becomes v
narrow with a high density of delocalized states at the Fe
level. The result is an unphysical growth of the conductiv
with decreasing density, which can only be avoided by t
ing U.0 and having the electron correlation split the narr
band.

In our model, or in any other disordered model with sho
ranged hopping, a ‘‘mean-field’’ treatment of the connect
ity would give similar results to those of Koslowskiet al.
However, we know that such an approach must fail at l
enough density, as the systems goes to the percolation
sition which is defined by a change from the existence to
absence of a path, through the ionic configurations, in wh
all hopping jumps are nonvanishing. When the connectiv
of each ionic configuration is taken into account, through
classical network of resistorsRi j defined in Eq.~9!, the
‘‘classical’’ percolation becomes a prerequisite for the qu
tum percolation of the electronic wave functions, even aU
50. Our separate treatment of each isolated cluster ma
formally regarded as the result of a Mott transition produc
by a high ratio between the correlation energy of a clus
and a very low hopping element between separated clus
which is implicitly included in our model regardless of th
value ofU. It seems that the existence of well defined ‘‘clu
ters,’’ with a nearly constant distance between nearest ne
bors, is a true characteristic of the alkali fluids, so that
choice of eithert or zero for the hopping matrix elements
qualitatively justified. Taking a nonzero value forU makes
very little difference in the electrical conductivity of ou
model, as the main effect of the electronic correlation is
ready included through the classical percolation requirem
in contrast, a choice ofUÞ0 is crucial in models with an
unbounded range for the hopping element. However,
have shown that the classical percolation depends stro
on requiring a self-consistent treatment of the ionic disord
The metal-nonmetal transition in our model is located w
within the vapor phase at coexistence~in agreement with the
experimental observations!, but only when the strong ionic
correlations are included through the self-consistent therm
ized disorder. We would obtain a percolation threshold~i.e.,
a metal-nonmetal transition! quite close to the critical den
sity, at higher density than our present results, if we
sumed, as do Kowslowskiet al., that the ionic disorder is
random and frozen. A future calculation with a continuu
description of the fluid, and with thermalized ionic disord
would allow a comparison of the results forU50 and a
short-ranged matrix element@ t(r i j )50 for r i j larger than
some distance# with those with a long-rangedt(r i j ) but U
.0. Meanwhile, we conclude that the present model give
qualitatively accurate description of the threshold for me
lic conductivity, ascribing it, in a physically intuitive de
scription, to the ionic percolation.

The main effect of the electron correlation, in our mod
appears in the magnetic susceptibility, which forU50 failed
to reproduce the Curie law for the low temperature dilu
vapor. With U/t56, the Curie law is obeyed by isolate
atoms and, in fact, by the coexisting vapor, up to nearly
critical temperature. This result is a combined effect of t
factors: lower cluster binding energies and a stronger in
ence of the electronic correlation in small clusters. In
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liquid branch of the coexistence curve, the susceptibi
goes to a Pauli-like dependence, becoming nearly indep
dent of T, but with some enhancement of theU50 results
due to electron correlations. The global structure of the m
netic susceptibility per unit volume, along the vapor-liqu
coexistence curve, has a weak shoulder joining the reg
with the Curie and the Pauli behavior. These results do
change qualitatively on using an exact treatment of the H
bard Hamiltonian for clusters up to six atoms. Thus, we m
conclude that they are true characteristics of the model
not artifacts of the Gutzwiller, and Riceet al., approxima-
tion.

In contrast to our results, Chapman and March@13# used
the GA to suggest a qualitative explanation for the expe
mentally observed magnetic susceptibility bump in cesiu
also, they assumed that the nonmetal-metal transition ta
place at a density which is smaller, but close to, that of
susceptibility bump . However, in the experimental resu
the local maximum ofx appears well within the liquid
branch, at a density which is nearly double the critical o
while the nonmetal-metal transition is in the vapor. In o
model both the susceptibility bump and the nonmetal-me
transition appear in the vapor, at about half the critical d
sity.

It is noteworthy that the tight-binding approach, with
single orbital per site and a value oft which reproduces the
critical temperature, gives a density of states at the Fe
level, for the dense liquid, which is two or three time
smaller than that obtained with a nearly-free-electron mod
and an effective mass near the free electron value, wh
presumably describes the dense fluid reasonably well. T
difference partly accounts for the fact that the paramagn
susceptibility in the Pauli regime is observed to be larg
than that calculated in this model. Qualitatively, one
tempted to say that our model should be modified to hav
larger number of electronic states and that then joining
Curie to the Pauli susceptibilities would carry the calcula
susceptibility bump into the liquid phase. However, such
argument ignores the basic conceptual problem of how
obtain a nearly Curie susceptibility, in the liquid, at the sa
conditions which produce a large electrical conductiv
~with a short mean free path!.

Another experimental observation which cannot be rep
duced by this tight-binding model is the Knight shift da
@22#. Those data, when coupled with the measured susce
bility, for Cs at coexistence, yield an electron density at
nuclei, for those electrons which contribute to the susce
bility, which, for the bulk liquid, is near half of that in the
free atom. As the liquid is expanded the electron density
the nuclei decreases with decreasing density, at first slo
and then more rapidly, to a minimum of near a third t
atomic value. Then, that electron density presumably
creases monotonically to the atomic value in the dilute
por. The increasing tendency has only been observed
the minimum. The minimum value is achieved at a liqu
density corresponding to that at which the susceptibility
observed to have a maximum. The single-orbital tig
binding model not only gives a density of states at the Fe
level which is too small but, neglecting overlap of the fun
tions at the various sites, it gives an average electron den
at the nuclei which is always the atomic value.
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We conclude that the present model offers a good qu
tative description of the liquid-vapor coexistence and elec
cal conductivity of the alkali fluids. These properties depe
strongly on the self-consistency between the ionic and
electronic structures. The use of hopping matrix eleme
restricted to nearest-neighbor ions provides an interpreta
of the metal-nonmetal transition as due to a classical pe
lation of the ionic structures. We have shown here that
interpretation is qualitatively correct even for high values
the electron-electron repulsion. The results for the electr
conductivity depend weakly onU, with the main depen-
dence on density appearing through the ionic connectiv
Regarding the magnetic susceptibility, the model appear
have the correct trends but our self-consistent calculat
show that all the experimental results cannot be directly
.
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plained using the Gutzwiller, and Riceet al., approach, as
had been suggested by Chapman and March. An extensio
the model to include more orbitals and thus increase of
density of states in the liquid may affect this problem a
also allow an estimate of the observed Knight shift, but su
a suggestion requires further investigation and proba
some new physics.
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